24
Nov
19

Ultrasonic Field Recording

I had been looking for ways of recording sound from scenes which was not immediately obvious.  I had developed an inductor-based recording device which could pick up electrical noise, and the next area I wanted to explore was ultrasonic sound – that is, sounds which are too high for our ears to hear.

A recording of sounds which are too high for our ears to hear, of course, would not be too interesting – you wouldn’t be able to hear anything on the recording, either; but I got the idea of what to do with them from a type of device available commercially in finished or even kit form – a Bat Detector.

Bats make noises which are mostly ultrasonic – too high for our ears to hear – when they hunt and communicate.  What the classic bat detector does is pick up these ultrasonic sounds, amplify them and lower their pitch by an octave or two, so we can hear them.

But not only bats make noises in the ultrasonic region, many noises around us contain ultrasonic elements which we can’t hear as well as elements which we can hear.  Lowering the pitch of the ultrasonic elements would enable us to appreciate the fullness of sounds which at the moment we only hear part of.

There are several ways of changing the pitch of ultrasonic sounds, and there are many circuits available on the internet utilising these methods for producing a bat detector.  The three main ways are:

1. Frequency Division, in which the very high-pitched bat sounds are converted into square waves which can be digitally divided by – typically – 10, to produce a much lower sound, within the range of human hearing. For example, a bat making calls at 50kHz, when divided by 10, will sound at 5kHz – quite high, but well within our normal hearing range of 20Kz to 20kHz.

2. Time Expansion, where sounds are recorded digitally in the bat detector at a high sampling rate, then played back at a slower rate.  This is a common method of pitch-changing in the world of digital sampling (and the method I used in the computer-based Black Widow sample manipulator).

3. Heterodyne, which works on the same principle as the electronic musical instrument, the Theremin: the high-pitched sounds are mixed with equally high-pitched sounds produced by an oscillator inside the bat detector. The aim is to tune the bat detector to produce a slightly different pitch to the bat, as the output is designed to be at a frequency which is the difference between the two pitches. In this case, if the bat is making calls at 50kHz, for example, and the bat detector is tuned to 45Hz, sounds will again be heard at 5kHz.

This latter turned out to be the method I used – in fact, I bought a bat detector kit.  The best commercially available bat detectors are very expensive, providing a wide frequency range to work within, and often providing more than one way to hear the bats.  I should make it clear at this point that I wasn’t particularly focusing on bats – I wanted to listen to any ultrasonic sounds that might be in the vicinity; but I wanted as wide a variety of sounds as possible to be detected and brought into hearing range.

So I found a neat-looking and very reasonably-priced kit, the Franzis Bat Detector, which was available from a number of sources, all at around £20-£25.  It comes in an attractive and quite sturdy cardboard box, which can serve as the container for the circuit when made up, with art work for the two potentiometers required – for frequency and volume – and holes behind which the speaker is attached.

Inside the box is a very small PCB, no more than 3″ long, already populated with about 25 tiny SMD (Surface Mount Device) components:

Together with the board is a plastic bag containing a handful of non-SMD components, which you solder in place yourself.  These include a battery clip (not shown), a 5v voltage regulator, a few capacitors, an LM386 i.c. amplifier, the two potentiometers and an ultrasonic receiver – in appearance rather like a large electret microphone capsule.

Together with the components, there was a nicely-produced and informative booklet, containing general information about bat detection, an explanation of how the circuit works, a circuit diagram and comprehensive instructions for assembly and testing.

*

Beginning at the front end of the circuit, there are many different types of ultrasonic receiver available, and the majority are rather expensive.  The one that came with the kit is the most popular of the more reasonably-priced ones, but is designed to work best at 40kHz, with quite a narrow band of frequencies in which it works at its greatest efficiency.  This is because it is designed to work in precisely that way, usually being paired with an identical-looking 40kHz ultrasonic transmitter, and commonly used together in detection or distance measuring applications.  I was concerned that this frequency restriction might limit the sounds the detector was able to pick up, bats or otherwise, but there is a certain amount of pickup outside the intended operating range.

*

This particular circuit would probably not suit it, but a possible alternative to the ultrasonic receiver in some circumstances would – surprisingly – be an electret capsule.  Although these are sold for use in ordinary microphones, some have good ultrasonic capabilities.  It’s hard to know which ones, and to what extent they might be useful in this regard, as figures are not normally released for frequencies above 20kHz, the normal extent of human hearing.

However, one capsule known to have a good response even in the environs of 100kHz is the Panasonic WM-61A, one which has been tested and used in this way.  Unfortunately, this particular capsule was discontinued more than a decade ago, and remaining ones are getting more and more expensive, even if they can be found.  Some are still advertised on, for example eBay, but I was put off by warnings of possible fakes, whose frequency response would not necessarily be the same.

A good currently available alternative is the Primo EM258 from FEL Communications.  At over £5 each, these were 20 times as expensive as the unbranded electret capsules I’d bought before for other more conventional microphone projects, but they are not much more expensive than genuine Panasonic WM-61As these days, and have been tested and shown to have a good ultrasonic response (better, in fact than the Panasonics, according to FEL).

JLI Electronics manufacture the JLI-61A, which is intended as a direct replacement for the WM-61A, but it wasn’t clear that this was available at a reasonable price in the UK.  In the US this would be a good  alternative, at half the price of the Primo.

FEL, incidentally, also advertise a potentially excellent alternative, a tiny SMD-style MEMS microphone.  Normally these things are practically invisible to the naked eye, but FEL have installed one on a breakout board like this:

The microphone itself is a Knowles SPU0410LR5H-QB, as the legend on the PCB suggests, with a sensitivity to ultrasonic frequencies up to 200kHz and beyond.  It was almost twice as expensive as the Primo electret, but would, no doubt work very well, and that price, just under £10, is not at all unreasonable compared to current good quality alternatives.

Alternatively, the cheapest way to obtain a second ultrasonic detector – other than ordering direct from China – might be to purchase a module like this:

Its purpose is distance measurement – the device on the left, marked ‘T’, is an ultrasonic transmitter, the one on the right, marked ‘R’ is a receiver.  It would be a few moments work to detach the receiver from the board, and attach it at the beginning of the circuit.

*

As for the construction, I planned to fit the circuit inside one of the small boxes I had previously used for microphone preamps; so I connected the small PCB to sockets in the box for power and audio out – I intended to use headphones instead of the speaker supplied.  I also added an extra socket for a line out from the wiper of the volume control.  Together with an appropriate preamp (for example, the one I use for my contact mics), this would enable me to record the ultrasonic sounds I was picking up.

 

I attached the ultrasonic detector to the front of the box with hot glue, and attached a pair of 2.5M bolts for the two aerials, which had threaded bases (in the end I only used one aerial).  I also added an extra socket for attaching an external aerial or detector; a plug here would disconnect the internal ones.

The remaining parts of the circuit were: a buffer/amplifier for the ultrasonic detector; a high-frequency oscillator, based on 555 integrated circuit; a mixing/heterodyne circuit, and an audio amplifier, based on an LM386 (the only part of the circuit which uses the full 9v available from the PP3 battery).

*

The difficulties with the first part of the circuit  – the buffer/amplifier – if you were to build it yourself, are to do with size.  The specified transistor for this amplifier, the BC849C, is a tiny, tiny 3-pin SMD device.  I didn’t have a 5p handy – physically the smallest coin currently in use – but I did have a 1p, which is only a little bigger, and a BC849C, and this is how they compared:

It would be quite a task trying to attach wires to this miniscule component – but at least they’ve separated the 3 pins onto separate sides.  I obtained this one just as an example – the actual one used in this circuit was already happily soldered to the PCB by the makers!

*

The mixer section is based on a CD2003 chip, ‘originally developed for radio receivers’, as the kit booklet says, ‘the core of an AM/FM radio with oscillators, mixer stages, intermediate frequency amplifiers and demodulators for the two ranges’.  In this design, only the AM preamp and AM mixer stage are used.  According to the booklet, the i.c. ‘offers a total amplification of 40 dB and a suppression of the input signal of -20 dB. The output of the mixer provides a low pass filter for an additional damping of the input signal.’ – a very handy chip for the task in hand.  It is possible to get hold of these, but they are not nowadays common or cheap – except from China, it appeared.

*

After connecting everything together, I plugged the headphones in and tested the detector out, using the preamp I had constructed for the piezo contact mics.

The device worked well: I detected ultrasonic sounds from jangling a bunch of keys and from rubbing my finger and thumb together – everyday sounds known to have a significant ultrasonic component – and outside in the evening I was pretty sure I detected some genuine bats.

This view of the front of the device shows the two potentiometers which need to be accessed when the device is in use: the tuning control on the left, which adjects the frequency of the internal oscillator and effectively ‘tunes in’ the high frequency noise picked up by the ultrasonic detector; and on the right the volume control.

This view of the back shows, on the left, the unit with the 9v battery attached (with velcro, in my usual way); and on the right, without the battery, but showing the caption for the switch, indicating that either the ultrasonic ‘mic’ or the attached aerial can be selected; a 3.5mm plug in the ‘EXT AERIAL’ socket on the front disconnects the switch, so a different size or kind of aerial can be used.

The following sound file gives examples of some quick recordings I made with the ultrasonic detector.  Unfortunately, it’s now late November – much later than when I first tested the circuit out – so no bats flying around.  Instead, I just went round the house for 10 minutes, picking out a few promising locations.

So, you can hear fingers rubbing together, the laptop, TV set, some unexplained radio-tuning type sounds, a low-energy light-bulb, jingling keys, and water streaming slowly into the sink from a tap. The laptop, TV set, radio-tuning and low-energy light-bulb were recorded with the aerial, the others with the ultrasonic microphone-type detector.

The keys are particularly interesting, and I look forward to trying this on some natural sounds outside – especially bats when they emerge from hibernation next spring.

Top


0 Responses to “Ultrasonic Field Recording”



  1. Leave a Comment

Post a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.


andymurkin

November 2019
M T W T F S S
 123
45678910
11121314151617
18192021222324
252627282930  

Enter your email address to follow this blog and receive notifications of new posts by email.


%d bloggers like this: