Archive for December 31st, 2011

31
Dec
11

Alternative Keyboards 1

I’m not sure exactly which department this topic should go in, but I’ve added ‘Software/MIDI’ as the advent of these two things has made the possibility of using alternative keyboard layouts very much a practical proposition. I’ve been experimenting with these and come up with some relatively low-cost ways of trying them out.

The purpose of this post is to explain what ‘alternative keyboard layouts’ are – as opposed to ‘alternative methods of controlling synths’ or ‘alternative methods of generating musical notes’, which I deal with elsewhere in the blog. Although there’s undoubtedly an overlap between these things, I’d like to talk here about some specific proposals that have been made over the years to improve the traditional piano/organ keyboard – certainly appealing to those who are non-players of the instruments, but also with a specific appeal to trained keyboard players and those with a keen interest in music theory.

I’ll get into the music theory aspect, insofar as I understand it myself, later; and follow-up posts here will describe the different ways I’ve tried putting alternative keyboard layout ideas into practice.

To begin at the beginning, the conventional piano keyboard, with its line of large white keys interrupted by thin black keys, although a familiar and iconic design, isn’t necessarily the easiest way to play or learn to play music: you have to hold your arms at an odd, straight-on angle to the keyboard; it’s a long stretch from one note to the next octave up or down; you have to move your hands to different positions to play chords in different keys, and so on. Ultimately we might also consider how difficult it makes things if you want to play music using divisions of the musical scale which are different from the 12-note one we in the West are used to.

It was a long time ago, certainly as early as the 19th century, when people began to think of replacing the one-dimensional line of keys found on pianos and organs with a two-dimensional bank of keys, like the bank of keys on a typewriter (or this computer keyboard I’m using now).

It was quickly realised that there would be more than one advantage to this arrangement: notes could be repeated in several places on different rows, allowing the player to find the easiest way to play a particular passage (players of stringed instruments are used to this and wouldn’t want to be without it!); notes which are far apart on the conventional keyboard could be placed closer together, enabling even those with small hands to play chords or melodic passages with large intervals; and, most importantly of all, the keys could be distributed in such a way that the pattern of a particular chord would be exactly the same, no matter which key it was played in, and the pattern of a melodic passage would be the same, no matter which note it started on.

It is this latter feature which leads to the name often given as a description of this type of keyboard – ‘isomorphic’. Well-known isomorphic keyboard layouts were invented by Paul von Jankó and Kaspar Wicki in the 19th Century, and in the 20th Century, Brian Hayden independently developed a system similar to Wicki’s, which one often sees described as the Wicki-Hayden system.

This is a picture of a piano with a Janko keyboard layout. As you can see, there are still white notes and black notes, but not in the same pattern as on a conventional piano, and there are 6 rows of keys:

800px-MIM_Janko_Piano

[Photograph of piano with Janko keyboard at the Musikinstrumenten-Museum, Berlin by Morn the Gorn (Own work) [CC-BY-SA-3.0 (www.creativecommons.org/licenses/by-sa/3.0) or GFDL (www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons’ http://commons.wikimedia.org/wiki/File%3AMIM_Janko_Piano.jpg]

This diagram of the Wicki-Hayden layout shows how the notes are placed in relation to one another. The keys themselves may be buttons, as they are on a concertina or accordion (Brian Hayden was a concertina player), but the hexagonal pattern used here emphasizes the importance of diagonal relationships between the notes, and relates to the method often used in modern electronic instruments of using hexagonal keys set out in exactly this way.

Wicki-Hayden_Musical_Note_Layout

[Diagram of the Wicki-Hayden note layout used on some button accordions and some isomorphic button-field MIDI instruments by Waltztime (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File%3AWicki-Hayden-Musical-Note-Layout.png‘]

You can read about the Janko, the Wicki-Hayden, and a number of other isomorphic keyboard systems in the Wikipedia at:

http://en.wikipedia.org/wiki/Isomorphic_keyboard
http://en.wikipedia.org/wiki/Generalized_keyboard
http://en.wikipedia.org/wiki/Janko_keyboard
http://en.wikipedia.org/wiki/Wicki-Hayden_note_layout

Each of these pages contains numerous links to external sites, if you’d like to know more. I’ll be dealing with some of the issues that follow on from this, such as microtonality (as mentioned above, these two-dimensional layouts also lend themselves more readily to musical scales of more or less than 12 notes) and dynamic tonality in future posts.

You should also check out this site: www.altkeyboards.com/ which is also the home of the program MIDI Integrator, which I have used, and an interesting modern-day electronic instrument using an isometric keyboard (two, in fact) called the Jammer.

The Jammer, in turn, is a development along similar lines of an instrument called the Thummer – which almost reached the point of commercial production – and uses a keyboard called the AxiS-49, which is commercially available (from C-Thru Music at www.c-thru-music.com/cgi/?page=home). A larger version of this keyboard, the AxiS-64 is also produced:

All of these instruments these days are MIDI controllers, and YouTube is probably the best place to see them in action. This lengthy introduction to the AxiS-64 also serves as an illustration of many of the reasons why isomorphic keyboards were invented: http://www.youtube.com/watch?v=D7OeRkXWTtQ. You can also see the Thummer http://www.youtube.com/watch?v=GtzA2UHOr-A and the Jammer http://www.youtube.com/watch?v=GLN4CAl6p7A.

There are hundreds more videos of these instruments and others, including a nice-looking Japanese synth called the Chromatone, which appears to be completely self-contained: http://www.youtube.com/watch?v=in9_ojEnfO0.

The next post in this department will be on methods of creating simple isomorphic keyboards, and the hardware and software I’ve used to create mine.

Advertisements
31
Dec
11

Stylophones

I must say I’m very fond of Stylophones!

The Stylophone, if you’ve never encountered one, is a small, hand-held monophonic instrument played by touching a stylus to a row of metal pads – the edge of a large printed circuit board – laid out like the keys of a piano. It was invented and first marketed in the 1960s, and is sometimes described as the world’s first mass-produced synthesizer.

In my view the Stylophone is an indispensable element in the arsenal of the electronic musician – it’s simple, distinctive-sounding, and most types are available at a reasonable price, with patience, from charity shops or on eBay. It’s also possible to make a number of straightforward – and some not-so-straightforward – modifications to it. I have described elsewhere in the blog some of the ones I’ve done.

Although largely the brainchild of engineer Brian Jarvis, accounts of its genesis in 1967 suggest that the Stylophone would never have seen the light of day without the encouragement and input of brothers Burt and Ted Coleman who, together with Jarvis, ran a company called Dübreq. Dübreq produced equipment for the film and broadcasting industry and their name is said to derive from their specialities of DUBbing and RECording, with the umlaut and the ‘q’ added to give the firm more of an international air (or perhaps, like Motörhead or Mötley Crüe, just to look cool!)

The marketing masterstroke which ensured the eternal popularity of the Stylophone was the engagement of the multi-talented London-based, but Australian-born entertainer, Rolf Harris. Even before production began, the Stylophone was introduced to the world on Harris’s popular Saturday TV show on the BBC, and, it is said, became an instant hit – despite at first being available only by mail-order from Dübreq at the frightening cost of 8 pounds 18 shillings and sixpence, around ninety-five pounds in today’s money!

Over the following decade a number of different versions of the Stylophone were produced. I have a treble – which is all white – a standard black, and a bass – also black. This latter wasn’t a production model, but the circuit diagram that came with the standard showed different component values for all these three types, so I modified a standard to produce the bass register, an octave below. I’ve subsequently modified this to produce a further octave below that – I call it ‘The Double Bass’ – but this is not a modification suggested by Dübreq themselves.

This is a circuit diagram of an early Stylophone. Note the details of alternative components: resistors in the top left and capacitors in the bottom left.

Stylophone schematic 2

There is also a later 1970’s version (the ‘New Sound’) with a fake wood fascia in place of the familiar metal grille. This latter has a feature noticeably absent from the earlier models – a volume control, a useful feature in the days before the ubiquitous earphones. Here is the component layout and schematic/circuit diagram from the booklet which came with it.

Layout and Circuit Diagram

It was not long after this, in 1975 or thereabouts, when production of the original Stylophone ceased; and this might have been the end of the Stylophone story, had Brian Jarvis’s son Ben not had the idea in the early 2000s of bringing it back. By 2007 the new Stylophone S1 was on sale, sufficiently similar to the original to be instantly recognisable, but with some updated features, including built-in input and output sockets and a three-way tone control.

Stylophone S1 2sm

It’s possible to do modifications on all these variations on the Stylophone design, even the S1. Despite the fact that the chip that does all the work in the S1 is very tiny and inaccessible, parts of the pitch and vibrato circuits are available, and the output stage is on a separate PCB. I was able to do some mods on a couple of these.

The ‘New Sound’, based on the very common 555 chip is easier to deal with, and I was able to do a lot with mine (see http://wp.me/p25FoK-10). There are many circuits for 555-based oscillators in books and on the internet, and the 555 in the ‘New Sound’ is easily accessible for modding.

I haven’t done much with the original Stylophones – but these should be even easier, as the resistors which fix the pitches of the notes are exposed, and it should be possible to do things to these without too much trouble.

The biggest problem with the original and ‘New Sound’ Stylophones is likely to be the cost. Since these are sought after by collectors, they can fetch rather higher prices than you might want to pay for something which you intend to experiment on!

Many stars – other than Rolf Harris himself – have been publicly associated with the Stylophone. You can read about these on the Stylophone page in the Wikipedia at http://en.wikipedia.org/wiki/Stylophone, and see pictures of them on Stylophonica, ‘the official home of the Stylophone’ at www.stylophonica.com. You can also learn more of the history of the Stylophone at www.stylophone.ws (or www.stylophone.fsnet.co.uk), the Stylophone Collectors Information Site; buy a vintage Stylophone at www.stylophone.com, the Stylophone Sales Center; or even make your own Stylophone at www.instructables.com/id/A-Stylophone!

You will also find out about the mighty Stylophone 350S, much larger than the ordinary Stylophone, with two styluses (styli?), more notes, more tones and a cunning light-sensitive filter/vibrato control. This also went out of production in the 1970s and has not so far been revived.

Stylophone 350s

These machines – wonderful thought they are, as you can see – can be seriously expensive, and you would probably want to think twice about having a go at the electronics in it without knowing what you were doing. Having said that, like the conventional Stylophones of the period, the electronics will be relatively straightforward compared to modern devices. A bit like cars, really – in the old days it was much easier for the amateur home mechanic to sort out engine problems: nowadays, there’s very little you can do. The 350S has many different ‘voices’ and that intriguing photocell circuit . . . there’s got to be some scope there.

A new type of Stylophone that has appeared in recent years is the Stylophone Beatbox: a drum machine playable – of course! – by means of a stylus, including percussion, vocal percussion and bass sounds, and able to record and replay sequences. I have some functioning ones, which may also be good for circuit-bending, and some non-functioning ones from which the attractive circular playing surface should be useful for other projects.

stylophone_beatbox

I used the case and the keyboard PCB of one of these for a Stylophone project, but not the sound-producing electronics as there were faults with the ones I acquired which I couldn’t fix.

Dübreq’s website at www.dubreq.com suggests there are more Stylophone products in the pipeline, but none, at the time of writing have appeared. Some other websites have been advertising the imminent arrival of the ‘Stylophone Remixxer’, but I’m not aware of any genuine sighting of such an object.




andymurkin

December 2011
M T W T F S S
    Jan »
 1234
567891011
12131415161718
19202122232425
262728293031  

Enter your email address to follow this blog and receive notifications of new posts by email.